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Abstract

Belief propagation(BP) has been widely used to compute marginal probabilities for
Markov random Fields(MRFs). However, BP has no convergence guarantee even
on the convex objective function. Gradient based optimization method has been
studied for years. With properly set learning rate, it is guaranteed that will converge
to the optimum. Thus, in this project, we try to use projected gradient method to
replace the BP to compute the marginals for the MRFs. In our experiments, we
found that even though projected gradient method is convergent, it is much slower
than BP.

1 Introduction

Markov random fields(MRFs) Wainwright et al. (2008) are widely used in many applications,
including image segmentation Domke (2013), part-of-speech tagging Chen et al. (2011), and social
network analysis Zheleva et al. (2010).

A fundamental limitation to their practical use is the difficulty associated with computing various
statistical quantities, e.g., marginals, data likelihoods etc. Belief Propagation(BP) is the most widely
used method for computing the marginals. Convex BP Wainwright (2006) uses a convex variational
relaxation to construct the objective function. However, even the objective is convex, the convex
BP is not always convergent Kolmogorov (2006). Some methods have been proposed to solve this
problem. The sequential tree-reweighted BP has convergence guarantee, but it requires to modify the
tree appearance probabilities at each iteration. Roosta et al Roosta et al. (2008) show that parameter
of the MRF and the edge weights satisfy some relationships, the convex BP will converge.

Gradient based optimization methods Boyd and Vandenberghe (2004) has been well-studied for
many years. They are easy to implement, have low iteration complexity, and theoretical convergence
guarantee. In this paper, we try to replace the BP with projected gradient method to compute the
marginals, i.e., beliefs, for MRFs.

2 Backgrounds

In this section, we introduce MRFs and convex BP.

2.1 Markov Random Fields

A Markov random field (Wainwright et al., 2008; Wainwright, 2006) associates a collection of random
variables, X = {X1, ..., Xn}, with the vertices of an undirected graph. Consider an undirected graph
G = (V,E), where V = 1, ..., n is the vertex set and E ⊂ V × V is the edge set. Each vertex s is
associated with a multinomial random variable Xs, taking values in the set Xs = {1, 2, ...,m}. We
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use xs to denote a particular state of Xs. In this paper, we focus on pairwise Markov random fields.
The probability mass function of a pairwise Markov random field can be written as

p(x|θ) = exp{
∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)−A(θ)}, (1)

where θ is the parameter of the Markov random field that we want to learn. We define θ as

θs(xs) :=

m∑
j=1

θs;jIj(xs),

θst(xs, xt) :=

m∑
j=1

m∑
k=1

θst;jkIj(xs)Ik(xt),

θ = {θs|s ∈ V } ∪ {θst|(s, t) ∈ E},

where θs = {θs;j |j = 1, ...,m} and θst(xs, xt) = {θst;jk|j, k = 1, ...,m} are vectors of parameters,
I is the indicator function

Ij(xs) =

{
1 if xs = j

0 otherwise,

and the function
A(θ) = log

∑
X

exp{
∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)} (2)

is the logarithm of the normalizing constant.

2.2 Convex Belief Propagation

In most situations, when the network is not a tree, the normalizing function A(θ) is intractable.
One popular method is to use belief propagation (BP) (Wainwright et al., 2008; Pearl, 2014) to
approximate the A(θ) function. In this paper, we focus on a form of convex belief propagation that
optimizes an alternate inference objective based on a distribution of spanning trees over the MRF
graph (Wainwright, 2006; Wainwright et al., 2005). This method, known as tree-reweighted belief
propagation (TRW-BP), approximates A(θ) with a convex function B(θ). The convex function B(θ)
is defined as

B(θ) = max
τ∈L(G)

{〈θ, τ〉 −B∗(τ)}, (3)

where
L(G) := {τ ∈ Rd+|

∑
xs

τs(xs) = 1,
∑
xt

τst(xs, xt) = τs(xs)},

and τ is an element of L(G). The vector τ is called the pseudo-marginal or belief vector. Specifically,
τs is the unary belief of vertex s and τst is the pairwise belief of edge (s, t). For convenience, we
define that

τ = {τs|s ∈ V } ∪ {τst|(s, t) ∈ E}.

In the analysis of convex belief propagation, we define a strongly convex function B∗(τ), which has
the following form:

B∗(τ) = −
∑
s∈V

H(τs) +
∑

(s,t)∈E

ρstIst(τst),

where

H(τs) =
∑
xs

τs(xs) log τs(xs)

Ist(τst) = ρst
∑
xs,xt

τst(xs, xt) log
τst(xs, xt)

τxs(xs)τxt(xt)

are the unary entropy and mutual information, respectively, and ρst is the edge appearance probability
under the distribution of spanning trees.
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Equation 3 can be solved via TRW-BP (Wainwright et al., 2005). Let λst be the message from vertex
t to vertex s. The update rules of messages and beliefs are as follows:

λst ∝
∑
s

exp{ 1

ρst
θst} ×

τs
λts

, (4)

where
τs ∝ exp{θs} ×

∏
t∈N(s)

λρstts , (5)

and

τst ∝ exp{θs + θt +
1

ρst
θst} ×

∏
v∈N(s) λ

ρvs
vs

λ1−ρstts

×
∏
v∈N(s) λ

ρvt

vt

λ1−ρtsst

. (6)

From Equation 4, Equation 5, and Equation 6 we can see that the update rules for the beliefs and
messages are just closed form solutions of them. It is efficient but has no convergence guarantee.

We focus on the tree-reweighted form of convex BP in this project, but other forms of convex BP can
also be used in our approach.

3 Projected Gradient method for Markov Random Fields

Notice that the computation of τ can be seen as a constraint optimization problem:

max
τ

L(τ) = 〈θ, τ〉+
∑
s∈V

H(τs)−
∑

(s,t)∈E

ρstIst(τst) (7)

s.t. τ ∈ L(G)

To use projected gradient to optimize τ , we need to first use gradient based method to update τ , and
then project the updated τ to the polytope L(G).

3.1 Gradient Ascent to Update Beliefs

The gradients of unary belief τs and the pair-wise belief τst are different. The gradient of τs is:

∇τsL(τ) = θs − 1− log τs +
∑

t∈N(s)

ρst.

The gradient of τst is

∇τstL(τ) = θst − ρst(1 + log τst − log τs − log τt)

Thus, we can have the update rule of τ that

τ ′ = τt + αt∇τL(τ) (8)
where τt is the τ at iteration t, the αt is the gradient, the τ ′ is the unprojected τ , and ∇τL(τ) =
[∇τv1L(τ), ...,∇τvV L(τ),∇τe1L(τ), ...,∇τeEL(τ)]T is the concatenation gradient vector of τ .

3.2 Project Beliefs to the Feasible Polytope

3.2.1 Rewrite constraints

To do the projection, we need to first rewrite the constraint, i.e., τ ∈ L(G) to the equality and
inequality constraints. Note that τ must be non-negative. Thus, the inequality constraints of τ will be:

τ ≥ 0
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Then we rewrite the constraints
∑
xs
τs(xs) = 1, and

∑
xt
τst(xs, xt) = τs(xs) to the

Pτ = b

format. Each row of P is a constraint of τ , and since it is a matrix product, the column dimension of
P is equal to the τ ’s dimension. Note that τ = [τv1 , ..., τvV , τe1 , ..., τeE ]T . Let the number of states
of the MRF be D, then the τ ’s dimension is V ×D + E ×D2.

For each node s, we need to have
∑
xs
τs(xs) = 1, so we have V equality constraints for unary

beliefs. For each edge (s, t) and each state i, we need to have that
∑
xt
τst(xsi, xt) = τs(xsi), so we

have 2× E ×D equality constraints for pair-wise beliefs. Thus, the P has V + 2× E ×D rows.
The detailed construction of P is as below.

Let P1 be the sub-matrix of P that represents the constraints for unary beliefs, and P2 be the sub-

matrix that represents the constraints for pair-wise beliefs. We have that P =

[
P1

P2

]
. Let P1i be the

constraint for the ith unary belief. Since we want to have that
∑
xs
τs(xs) = 1, we can construct the

P1i as below:

P1i = [0, 0, ..., 0 1, ..., 1︸ ︷︷ ︸
coefficients of τi

, 0, ..., 0] (9)

The intuition of construct P2 is that for any edge (s, t), we need to have that
∑
xt
τst(xs, xt) −

τs(xs) = 0, which implies that for any state d of xs, we should have that
∑
xt
τst(xsd, xt) −

τs(xsd) = 0. Let (s, t) be the jth edge in the network. Note that for each edge, it has 2 × D
constraints. For the dth state of vk, we can construct its corresponding constraint as below:

P2,2D(j−1)+d = [0, ..., 0, −1︸︷︷︸
coefficients of τi(xsd)

, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸
coefficients of τkl(xkd, xt)

, 0, ..., 0] (10)

Next, we turn to construct the b to make Pτ = b. Let b =

[
b1
b2

]
. Note that for each unary belief, its

constraint is
∑
xs
τs(xs) = 1. Thus we have that b1 = [1, ..., 1]T . For each pair-wise belief, we have

that
∑
xt
τst(xs, xt)− τs(xs) = 0. Thus, we have that b2 = [0, ..., 0]T .

3.2.2 Treat the Projection as a Quadratic Programming Problem

With the written constraints, we can now rewrite the projection step as a quadratic programming
problem. Let τ ′ be the updated τ obtained from Equation 8. Let Π(z) be the projection function, we
can treat the projection as the following problem:

Π(z) = min
τ
||τ − z||22 (11)

s.t. Pτ = b, τ ≥ 0 (12)
(13)

3.3 Projected Gradient method for Computing the Marginals

With the gradient based update rule for τ , and the projection function, we can now build the projected
gradient method for computing the beliefs. The algorithm details are in Alrorithm 1. Note that
the complexity of computing the gradient is the same as using BP to update the beliefs. Since the
projection step requires to solve a quadratic programming problem, it may make this algorithm slower
than BP. However, since projected gradient method has convergence guarantee, and L(τ) is a strongly
convex function, when the learning rate is properly set, this algorithm is guaranteed to converge to
the optimum.

4



Algorithm 1 Projected gradient method for computing beliefs
1: Initialize t = 1 and τt.
2: While τ has not converged
3: τ ′ = τt + αt∇τL(τ)
4: τt+1 = Π(τ ′).
5: t = t+ 1
6: end

4 Empirical Study

In this section, we test our method’s performance on image segmentation. We use convex BP learning
framework to learn the parameters for the MRF. We then compute the beliefs for each image in the
test set using the learned parameters.

Experiment settings. We use horse dataset Kolesnikov et al. (2014) in our experiments. We randomly
select 30 images and compute the beliefs for them. We fix the image size as 10× 10. We compare
the gradient-based inference method with the convex BP. We test the number of iterations needed to
converge, and the per-iteration running time for each method.

We implement the methods in Python. To do the projection, we use the implemented function in
CVXPY to solve the quadratic programming problem, i.e., Equation 13.

Convergence analysis. In our experiments, we find that the gradient-based inference is slower than
the convex BP, i.e., Table 1. Since it needs to do the projection, i.e., Step 4 in Algorithm 1, every
iteration, it is slower than the convex BP. Besides, it needs more iterations to converge. The Figure 1
plots the convergence curves for 3 different images.

Table 1: Comparisons of convex BP and Gradient-based inference on number of iterations needed to
converge and per-iterations running time.

Method Averaged per-iteration running time(s) Number of iterations needed

Gradient-based Inference 0.214799 153.06
Convex BP 0.000415 84.23
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Figure 1: The convergence curves of three examples.
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5 Conclusion

In this project, we try to use projected gradient method to replace BP to computing the marginals for
MRFs. The update of τ can be divided to two steps. First, we use gradient ascent to update τ , and
then we project the updated τ to the feasible polytope. We treat the projection step as a quadratic
programming problem. We conduct experiments on small networks, i.e., 10× 10 grid network. We
found that the projected gradient method indeed will converge to the optimal. We compare it with the
BP and found that BP is much faster than the projected gradient method. We conclude that this is
because to project the τ ′ to the feasible polytope, we need to solve a quadratic programming problem,
which needs a lot of time. In the future, we will try to accelerate the projection using other methods.
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